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Observability Analysis of INS with a GPS Multi-Antenna System 
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This paper investigates observability properties of strapdown INS aided by a GPS antenna 

array. The motivation to consider a GPS antenna array is that the lever-arms between the GPS 

antennas and IMU play an important role in the estimation of vehicle attitude and biases of 

IMU. It is shown that t ime-invariant INS error models are observable with measurements from 

at least three GPS antennas. It is also shown that time-varying error models are instantaneously 

observable with measurements from three antennas. Numerical simulation results are given to 

show the effectiveness of multiple GPS antennas on estimating vehicle attitude and biases of 

IMU when IMU has considerable magnitude of biases. 
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Nomenc la ture  
~cb ' Column vector of angular velocity of 

frame b relative to frame a, decomposed 

in frame c. 

pa  : Position vector decomposed in frame a. 

V a : Velocity vector decomposed in frame a. 

/?~ : Rotation matrix from frame a to frame 

b. 
~ c  ab Skew-symmetric cross product matrix of 

(.OCb. 

(^) : Estimated value of ( ) .  

~( ) : Estimation error of ( ) .  

( ' )  : Time derivative of ( ) .  

( ) r  : Transpose of ( ) .  

]( )1 : Absolute value of ( ) .  

( )X( )  : Cross product of two vectors. 

In : n X n identity matrix. 

0 : Zero matrix with an appropriate dimen- 

sion. 

The navigation frames used in the paper are: 
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/-frame : Earth-centered inertial (ECI) frame. 

e-frame : Earth-centered Earth-fixed (ECEF) 

frame. 

b-frame:  Body frame (Forward, Right, Down). 

I. Introduction 

Improved navigation can be realized by the 

integration of the Global Positioning System (GPS) 

and inertial navigation system(INS) (Parkinson 

and Spilker, 1996; Kaplan, 1996). GPS receivers 

provide position and velocity of vehicles with 

bounded accuracy. The accuracy is independent 

of elapsed time from the start of measurement. 

However, GPS receivers can be considered as 

discrete-time sensors; in many cases, their sam- 

pling period is about one second. Occasionally, 

measurement is not available during loss of lock 

on satellites due to shading of GPS antennas or 

radio-frequency (RF) interference. The INS is a 

continuous- time measurement system. It is self 

-contained and is not dependent on the external 

signals. It offers short-term stability, but has poor 

long-term stability due to bias of an inertial 

measurement unit(IMU) which consists of gyros 

and accelerometers. Using the above complemen- 
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tary properties of GPS and INS, various integra- 

tion schemes have been suggested to overcome 

shortcomings of each sensor system (Parkinson 

and Spilker, 1996 ; Kaplan, 1996 ; Farrell and M. 

Barth, 1999). 

An attractive scheme of the integration is to 

estimate biases of IMU in strapdown INS with 

GPS measurement during navigation. With this 

integration scheme, an accurate and low-cost na- 

vigation system that provides long-term stability 

and continuous measurement can be constructed 

with relatively low-accurate inertial sensors. 

There have been several approaches to the esti- 

mation of biases of IMU using GPS measurement. 

A technique to determine attitude of a vehicle by 

GPS antennas without IMU is developed in 

Cohen(1992), and is applied to flight test (Cohen 

et al., 1994). The GPS attitude measurement sys- 

tem in Cohen et a1.(1994) is employed in Hay- 

ward et a1.(1997), Gebre-Egziabher et a1.(1998) 

to estimate gyro bias. A nonlinear observer for 

attitude and IMU bias is suggested in Vik et al. 

(1999). The observer is proven to be exponen- 

tially convergent for IMU biases that are modeled 

as Markov processes. A sensor fusion technique is 

introduced in Sadaka(1998) to estimate vehicle 

attitude and IMU biases with GPS, IMU, and 

air-data sensors. 

One way to determine the effectiveness of a 

measurement system for estimator design is to 

analyze the observability properties of the system. 

Several methodologies have been suggested for 

the observability analysis of INS. The observa- 

bility of INS during alignment and calibration 

at rest with velocity measurement is analyzed in 

Bar-ltzhack and Berman(1988), Jiang and Lin 

(1992) from a control theoretic viewpoint. Piece- 

wise constant modeling is proposed in Goshen- 

Meskin and Bar-ltzhack (1992a) for the observa- 

bility analysis of time-varying systems. The piece- 

wise constant modeling is applied to the analysis 

of in-flight alignment (IFA) of INS (Goshen- 

Meskin and Bar-ltzhack, 1992b). Goshen-Mes- 

kin (1992b) shows that t ime-invariant INS error 

models with velocity measurement have unobser- 

vable modes which are combinations of estima- 

tion errors of attitude and IMU biases. Using the 

piece- wise constant modeling she shows that the 

number of unobservable modes can be decreased 

with maneuvering of the vehicle. In contrast to the 

works mentioned above in which observability of 

systems is analyzed by the rank test of observa- 

bility matrix, Ham and Brown(1983) suggests 

error covariance matrix of the Kalman filter as a 

performance index for the degree of observability 

of systems. A nonlinear analysis based on the 

Lyapunov stability theorem is given for an ob- 

server design for the integration of GPS and INS 

(Vik et al., 1999). 

In this paper, observability properties of strap- 

down INS aided by GPS are investigated with 

null space test of observability matrix. Both 

loosely-coupled and tightly-coupled GPS/INS 

integrations are considered. The INS error dy- 

namics model is described in the ECEF frame. 

This model is convenient to handle GPS measure- 

ments represented in that frame. The state in the 

error model consists of 3-dimensional biases of 

gyro and accelerometer, and errors for position, 

velocity, and attitude. The biases of IMU are 

assumed to be constant. The time-constant model 

could be useful for biases that change very slowly 

compared with vehicle dynamics. Measurements 

for the position and velocity of GPS antennas are 

used for the analysis of observability properties. 

Multi-antenna GPS measurement systems can 

provide attitude information in addition to posi- 

tion and velocity. Since attitude can be deter- 

mined from the position measurements of the 

antennas, attitude measurement is omitted to av- 

oid redundancy. 

Biases, scale-factor errors, and misalignment 

errors are usually considered as the most impor- 

tant errors in inertial sensors. Misalignment errors 

are made small during manufacturing and con- 

stant. The errors can be considered deterministic 

and will be neglected in the paper. Biases and 

scale factors of very low-grade IMU are depen- 

dent upon temperature. Since the effect of tem- 

perature on the scale factor is relatively small 

compared to biases (Hayward et al., 1997; Ge- 

bre-Egziabher et al., 1998), the scale factor is also 

neglected in the IMU error model. Even though 

biases for very low grade IMU can be described 
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as first order Markov processes, the time constant 

in the Markov process model is usually very long. 

Hence, a time-constant model is employed for 

biases in IMU. 
The primary motivation for considering a 

mult i-antenna GPS measurement system is that 

lever arms of GPS antennas and IMU play an 

important role in the estimation of INS error. The 

measurement system cannot only make time- 

invariant INS error models observable, it can also 

make time-varying error models instantaneously 

observable. Hence, with the sensor system, an 

improvement in the on-l ine estimation of INS 

error could be expected during navigation with- 

out applying maneuvering to vehicles. 

One of the main contributions of the paper is 

that the minimum number of GPS antennas to 

observe attitude and IMU biases without maneu- 

vering of vehicle is explicitly shown to be three. 

The other contribution is the framework for the 

analysis of mult i-antenna GPS aided INS. The 

methodology could be useful for engineers or 

researchers who are designing a mult i-antenna 

GPS/INS system and require a framework for 

analysis of the concept. 
Navigation error propagation model in the 

ECEF frame is given in the following section. In 

section 3, GPS measurement error models are 

described for both loosely-coupled and tightly- 

coupled integrations. In section 4, observability 

properties of GPS/INS system are given. In sec- 

tion 5, we present numerical simulation results 

which support the analysis results given in section 

4. Concluding remarks are given in section 6. 

Finally, proofs for lemmas in section 4 are given 

in appendices. 

2. N a v i g a t i o n  E r r o r  P r o p a g a t i o n  

M o d e l  

where fb  is the specific force in the body frame 

and ge is the gravity in the ECEF frame. The 

corresponding INS mechanization differential 

equations are 

/~e: ~e (4) 

~e = j~g2~t'-- 2(.0~ × 9 e + ~  e (5) 

/~g=J~g 5 g  (6) 

coib-- R,coi~ (7) 

where )~b and &~ are measurements from accelero- 

meters and gyros, respectively. The mechanization 

errors are modeled as 

P ~ = p e + s P  ('8) 

9 e = v e + a v  (9) 

g=Rb(A+[7×])e (10) 

j2b=fbq-Eaq-W a (11) 

6)~,= oA,+ e g +  wg (12) 

where 7 is the attitude error, [TX] is the cross 

product matrix of 7, ea is the accelerometer bias 

vector, wa is the accelerometer noise, eg is the 

gyro bias vector, and wg is the gyro noise. Bias 

vectors eg and 6"a are assumed to be constant. 

Then the linearized error propagation equations 

are 

8P=Sv  (13) 

8 V = G S P -  Q e S V - R F T + R ~ a + R w a  (14) 

~ , = -  ~2 7+ ~g + wg (15) 

~g=0  (I 6) 

~a=0 (17) 

where G = age F is the cross product matrix Op e' 

of f t  _ e Q e--2 i'2/e, R and Q are the simplified 

notations of Rg and Q ~,, respectively. 

3. G P S  M e a s u r e m e n t  E r r o r  M o d e l  

The navigation equations in the ECEF frame 

are (Wei and Schwarz, 1990) 

pe=ve (~) 

V e - R e C b  2w e × V e + g  e (2) 
- -  b J  - -  i e  

.~__ e b (3) R b-- Rb f~ eb 

In this section, error models of measurements 

for the position and velocity of each antenna are 

given for the analysis of observability properties 

of GPS/INS systems with multi-antenna. Even 

though mult i-antenna GPS measurement systems 

can provide additional attitude information, the 

attitudes are determined from the position mea- 
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surement of  the antennas. Hence, atti tude mea- 

surements are omitted in the measurement  error 

model  to avoid redundancy. 

3.1 Loosely-coupled GPS/INS systems 
In the loose ly-coupled  G P S / I N S  integrations, 

GPS receivers process pseudorange and pseu- 

dorange rate data to produce posi t ion and veloci- 

ty. These outputs are used to correct INS errors. 

Measurements  from the GPS receivers are mo- 

deled as 

P f  = pe-I- R l j  + vt, s (18) 

V f =  Ve+RfJb l v+vvs ,  j = l ,  2, ..-, m (19) 

where P f  and Vf  are posit ion and velocity 

measurements from the j th  GPS receiver antenna, 

respectively, Is is the posit ion o f  the j th  GPS 

receiver antenna relative to that o f  IMU de- 

composed in the body frame, Q b is the simplified 

notat ion of  b e~, Vpj' and v~j are the posit ion and 

velocity measurement  noises of  the j th GPS re- 

ceiver antenna, respectively, and m is the number  

of  GPS  receiver antennas. Est imation equat ions 

for measurements are given as 

PY=Pe+/~g6 (20) 

ve= ge + i~eoQ°ebls (21) 

The estimation errors for measurements are de- 

fined as 

Pe= g %  aP/ (22) 

17"e: V f + a ~  e (23) 

Then, the l inearized measurement  estimation 

errors can be shown as 

8Pf  = 3 P -  R L s y -  vps (24) 

3 V f  = 8 V +  R [ (L~ f~ -- Q bL~) ? ' -  Lseg] 
(25) 

- R L s w g -  vos 

where L j  is the cross product  matrix of  ls. 

p~,o= I p , , o _  p / [ +  c 6 +  ~50 (26) 

h?--I v e('~- B e I + c i s +  ~'~ °, 
(27) 

i = l ,  2, 3, 4, j = l ,  2, ..., m 

where p~'~ is the pseudorange of  the ith satellite 

from the j th  GPS  receiver antenna, peo~ is the 

posit ion of  the ith satellite decomposed in the 

E C E F  frame, c is the speed of  light, ts is the clock 

bias of  the j th  GPS  receiver, r]J ° is the composi te  

of  errors produced by atmospheric delays, satel- 

lite ephemeris  mismodel ing,  receiver tracking 

error, etc., p~'~ is the pseudorange rate of  the ith 

satellite from j th  GPS  receiver antenna, V e('~ is 

the velocity o f  the ith satellite in the E C E F  frame, 

[~- is the clock drift of  the j t h  GPS  receiver, ~'~ is 

the measurement  error. Est imations for measure- 

ments are given as 

£ o =  I p e .~ _p e  I+CL 
~(.0.~_1 ve(i)__ 9e [~_C; s 

(28) 

(29) 

The  est imation errors for measurements are de- 

fined as fo l lows:  

h~ ° = p~'~ + ap~ '~ (3o) 
~( i )__ .(i)_t_ .~(i) 
PJ - -PJ  c~vs (31) 

L = t s + e 6  (32) 

2~ = is + ais (33) 

Let 

am=Eap)  ') ap) 2' ap) 3, ap)',] T (34) 

a o ~ = [ a p ?  a07' ap?, ao)',] ~ (35) 

r ]s= [ r / }  ') r]J 2' r]J 3) r/J')] r (36) 
~-j=[~-},) ~)2) .~la) ~-j4)]r (37) 

Then, the measurement  est imation errors can be 

shown as 

3.1 Tightly-coupled GPS/INS systems 
In the t ight ly-coupled integration, raw data 

from GPS satellites such as pseudorange and 

pseudorange rate are used to correct INS errors. 

Measurements  from the GPS  receivers are mo- 

deled as where 

3 H ravel 
or = , L c a 6 ] - v ,  (38) 

ah,= Hs[ a v( ] -  ~ (39) 
cSG 
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/4,-= 3p~') 

ppf  1 
ap~ 2~ 

: ap~ 3> 
OFf l 
ap~ 4~ 
aPf l 

(40) 

4. Observability Properties of 
GPS/INS Systems 

In this section observability properties of GPS/  

INS systems are presented for both loosely-cou- 

pled and tightly-coupled integrations. Time- 

invariant error models as well as time-varying 

error models of INS are considered. The ob- 

servability properties are investigated by testing 

null space of observability matrix. The main focus 

of the investigation is on the relation between the 

number of GPS receiver antennas and the ob- 

servability of attitude error and biases of IMU. 

Even though the linearized INS error models 

are time-varying systems, time-invariant forms 

of the error models are also considered in this 

paper for the following reason. As mentioned in 

Goshen-Meskin and Bar-Itzhack (1992b), time- 

varying INS error models can be made observa- 

ble with velocity measurement by maneuvering. 

However, there are situations in which maneu- 

vering of vehicles to improve observability might 

not be easily realizable. In these cases, the error 

models can be considered time-invariant. For 

example, an error model for vehicles that follow 

predetermined smooth paths can be treated as a 

time-invariant system; acceleration of vehicles is 

constant and their angular velocity is zero. 

Before the main part of this section is in- 

troduced, the definition of observability of linear 

systems used in this paper are presented for the 

sake of clarity. Consider the linear system : 

5-7. : ~ ( t ) = A ( t ) x ( t )  

y(t) = C ( t ) x ( t )  

where A ( t )  and C(t)  are n × n  and p×n  
matrices whose entries are continuous functions 

of t defined over (--c~, c~) 

Definition 1. The dynamic equation ~ is ob- 
servable at to if there exists a finite tx :> to such that 

for any state x0 at time to, the knowledge of the 

output y( t )  over the time interval [t0, h] suffices 

to determine the state x0. 

Define a sequence of p × n matrices No(t), Nl( t ) ,  
• ", Nn-a(t) by the equation 

Nh+,(t) = N k ( t ) A ( t )  + ~ N k ( t ) ,  

k = 0 ,  I, 2, -.., n - 2  

No(t) = C ( t )  

Suppose A ( t )  and C(t)  in the system ~, are 

analytic functions of I. Then, the time-varying 

linear system is said to be instantaneously 
observable in ( - c %  ~ )  if and only if the rank of 

the matrix 

N0(t) 
N, ( t )  

Nn-~ (t) 

is n for all t in (--c~, co)(Chen, 1984). If the 

linear time-varying system is instantaneously 

observable, then any state x (t) can be determined 

from the knowledge of the measurement over an 

arbitrarily small interval of time for all t in 

(--c~, c~). Suppose A ( t )  and C(t)  in the sys- 

tem S] are constant. Then, the time-invariant 

linear system is observable if and only if the rank 

of the matrix 

C A  
C A  2 

CAn-U 

is n. If the linear time-invariant system is 

observable, it is observable at every initial time, 

and the determination of the initial state can be 

achieved in any nonzero time interval (Chen, 

1984). 

4.1 Loosely-coupled GPS/INS systems 
Let 

x = [ a P  ~ aW r ~ e~ eaT] ~ (41) 

y =[(a~)r (a~)r... (~ ) r  (av()r (aV2,)r... (aV;)r]r (42) 
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Cos=[I~ 0 - R L s  0 0] (43) 

C~s= [0 I8 - R  ( ~ 6 L s - L s  ~)  - R L s  0] (44) 

w = [ 0  (Rw~)r  (wg) ~ 0 0iT (45) 

Vm=--[V~ V~z "'" V[,m Vrvx Vrvz "'" Vrvm] r (46) 

Then, the linearized equations of errors for INS 

mechanization and measurement estimation are 

~L : 2 = A x + w  
(47) 

ym = Crux + Vm 

where Ym is the estimation error for measurements 

from the m GPS receiver antennas and i 00 1 G - f ~  - R F  0 
A =  0 o - Q h (48) 

0 0 0 0 

0 0 0 0 

Cm=[C~ C~ "" C~m cT~ cT2 "'" Crm] r (49 )  

Let 

L-RrG 

0 RLI 0 0] 

I3 0 RL~ 
0 /3 0 • '(50) 

0 Q I8 
RrQ~ F-RrGRLI RrQ~RLrLlf2 I3J 

£~1=[0 0 / 3 0 0 ] r  

£ r2=[0  0 (/2-/1) r 0 0 ]  

2 , 2 = [ 0  0 0 (12-1~ r O] 

XT1 ~ T2.~rl 

It2 ~ T2xrz 

X g 2 :  T23C g2 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

Let /1, 12, and /3 be linearly independent, then we 

have the following main results : 

Lemma 1. Suppose all the t ime-varying elements 

of A and C,~ in the system ~,z of (47) are an- 
alytic functions of time. Then, the t ime-varying 

system 5-],£ is instantaneously observable for 

m ~ 3 .  
Suppose A and Cm in the system ~'],z are 

constant. Then we have the following lemmas : 

Lemma 2. The t ime-invariant  system 'Y],z is 

observable for m ~ 3 .  
Lemma 3. xrz is an unobservable mode of the 

t ime-invariant  system ~,£ for m = 2  
Lemma 4. The following two conditions 

(1) (o~ is parallel  with [2-- lz, 

(2) G R l l × 1 2 = R F ( 1 2 - l l )  
are the only conditions for the t ime-invariant  

system 5-3,£ to have two unobservable modes for 

m : 2 .  In this case, xrz and xgz are the un- 

observable modes. 

Lemma 5. The t ime-invariant  system ~]L has 

three unobservable modes, xr~ for m =1.  

Remark  1. The assumption that A and C~ in the 

system ~L are constant implies that w ~ : 0  and 
b - -  b co~--w~. This assumption also implies that G, 

the gradient of gravity with respect to position, is 

constant even though the velocity of the vehicle is 

not zero. This assumption can be justified if the 

velocity is not very fast. 

Remark  2. £r~, x~2, and :~gz are unobservable 

modes represented in the transformed state 

2 ( =  Ti- 'x) .  
The following theorem obviously follows from 

the above lemmas : 

Theorem 1. The t ime-invariant  system ~-]¢ is 

observable if and only if m ~ 3 .  

The proofs of the above lemmas are given in 

Appendix A through Appendix C. 

4.2 Tightly-coupled GPS/INS systems 
It is assumed that the mult i -antenna measure- 

ment system is implemented by means of a single 

mult i -antenna receiver such that 

Let 

h = t2 . . . . .  tm= t 
i1=i2 . . . . .  i . = i  

xp=[x T c3t c~i] ~ (57) 

yp~=E~P~ ~p~ " ~p~ @~ ~P~ ' ~p~]T (58) 
w p = [ w  r 0 3t'3 r (59) 

Vpm=--[zff z/2 r "-' r/m T ~']" ~'? "'" ~'m~] r (60) 

Z t = [ ~  10] (61) 

c , . =  [Co ~ ° °  1 0 ]  (62) 

Cv.= [Co ~°°  0 1] (63) 

C m  = Hs Cpt~ (64) 
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Cpv~= H~Cvt~ (65) 

where x, w, V~, ~., H~, Cpj, and Cv~ are defined in 

(41), (45), (36), (37), (40), (43), and (44), 

respectively. Then,  

5-],r : . % = A o x p +  wp 
(66) 

ypm = Cp,,,xp + 

with V;m 

c ~ = [ c ~ l  c~,,~ ... cT, m cL~ cL~ ... c ; ~  ~ (68) 

where A is given in (48). Hj  in (64) and (65) 

consists of line of sight unit  vectors from the j th  

antenna  to the GPS satellites. According to 

G P S - I D C  200, orbit  radii of  GPS satellites are 

approximately 26,562 km and their angular  ve- 

locities are about  twice the earth's rotat ion rate. 

Hence, if the velocity of a vehicle is not very fast, 

H~ can be considered constant  for each j = l ,  2, 

• " ,  m. get  ll, /2, and /3 are linearly independent.  

Then,  we have the following lemma : 

Lemma 6. Suppose /-/~. is a constant  full rank 

matrix for each j = l ,  2, , m, and all the t ime-  

varying elements of Ao and Corn of the system 

~ r  of (66) are analytic functions of time. Then, 

the t ime-varying system ~ , r  is instantaneously 

observable for m-->3. 

Let 

X711 
X.Zl=k 0 J 

(69) 

(70) 

(71) 

and /1, /2, and /3 are l inearly independent.  Then, 

the lbl lowing Remark 3 and Theorem 2 for the 

t ight ly-coupled integration are given without 

proof, since the proofs are similar to those of 

Lemma 2 through Lemma 5 : 

R e m a r k  3. Suppose H~ is a constant  full rank 

matrix for each j =  1, 2, --., m, and Ap and Com 
are constant. Then,  the observabil i ty condi t ions  

for the t ime- invar ian t  system ~-],r of  t ight ly-cou- 

pled integration are the same as for the t ime-  

invariant  system ~.L of (47) of loosely-coupled 

integration with xprx, xpr2, and xpg~ instead of xrl, 

x~e, and xg2, respectively. 

Theorem 2. Suppose Hj  is a constant  full rank 

matrix for each j =  1, 2, --', m, and Ap and Cpm 
are constant. Then,  the t ime- invar ian t  system ~ r  

is observable if and only if m ~ 3 .  

Remark 4. Let the lever arms I1 , /2, and /3 be 

linearly independent.  Then,  it can be shown that 

the t ime-varying INS error model is instan- 

taneously observable with only posit ion mea- 

surements from three GPS antennas  for both 

loosely-coupled and t ight ly-coupled systems. 

Remark 5. Let the lever arms /1, /2, and /3 be 

linearly independent.  Then,  it can be shown that 

the t ime- invar ian t  INS error model is observable 

with only posit ion measurements from three GPS 

antennas for both loosely-coupled and tightly 

-coupled systems. 

5. Simulation Results 

L 

A numerical  example is given to demonstrate 

the behavior of Kalman filter for the estimation 

of attitude of a vehicle and biases of IMU with 

mu l t i - an t enna  GPS measurement system for a 

very low grade IMU. Responses of the mul t i - ra te  

extended Kalman  filter are simulated on a simple 

vehicle trajectory. 

The specifications of sensor errors in the nu- 

merical s imulat ion are adopted from currently 

available sensors. GPS attitude determinat ion 

systems are usually using four antennas  with 

measurement frequency of 1 to 10 Hz, which is 

much slower than IMU measurement frequency. 

Very low-grade IMU error statistics are employed 

from the typical micro electro mechanical  systems 

(MEMS) inertial sensors. In the simulat ion,  esti- 

mation of navigat ion state is updated with the 

IMU measurement at 10 Hz. Since the vehicle 

dynamics in the s imulat ion is very slow, fast mea- 

surement update does not improve the results and 

I Hz GPS measurement update rate and 10 Hz 

IMU measurement update rate are used. It is 

assumed that posit ions of  GPS antennas  are 

obtained from the double  differenced carrier 

phase measurements. Integer ambiguity problem 

is assumed to be solved so that the GPS position 
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measurements have centimeter level accuracy. 

Length of  each lever arm of  GPS antennas is 

about 1.7 m. Al l  the noises in the GPS receiver 

and IMU are assumed to be Gaussian white. 

Standard deviation of  GPS posit ion measure- 

ment noise is set to [5.0 5.0 5.0] in cm. Bias and 

standard deviation of  accelerometer noise are 1.2. 

approximately [0.06 --0.03 0.02] and [0.01 0.01 1•0- 
0.01] in m / s  z. Bias and standard deviation of  08- 

Gyro noise are E-0 .06  0.1 - 0 . 1 5 ]  and [0.036 08. 
0.036 0.036] in degree/s.  Initial estimation errors 

for roll, pitch, and yaw in degrees are 0.5, --0.5,  ~ 04- 

and 1.0, respectively. ~ 02. 

The path and attitude of  the vehicle in the o0. 

s imulat ion are given in Fig. 1 and Fig. 2. The -82. 

vehicle is motionless  at start. The forward direc- -o4. 

tion is north. The vehicle moves  up until 1000 m, -o6 

turns to the right 90 degrees, and changes attitude 

s imultaneously  during initial 250 seconds. Then,  

it moves to the east with constant speed afterward, 

without changing its altitude and attitude. It can 

be seen that the trajectory and attitude of  the 

vehicle change very slowly.  Estimation errors for 

attitude and biases are given in Fig. 3, Fig. 4, and 
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Fig. 5. Taking the magnitudes of the sensor noises 

into consideration, the GPS/INS system seems to 

estimate attitude of vehicle and biases of IMU 

quite accurately. We can see that the multi-antenna 

GPS measurement improves gyro bias estimation 

significantly. 

The results show that gyro bias estimation 

errors converge very quickly. Since the Markov 

process model for very low-grade gyros usually 

have a time constant that is of the order of 100 

seconds (Hayward et al., 1997 ; Gebre-Egziabher 

et al., 1998), the constant bias model in the 

simulation might be justified. 

6. Conclusions 

In this paper observability properties INS with 

GPS mult i-antenna measurement system are pres- 

ented. Estimation errors for position, velocity, 

attitude, and biases of inertial sensors are con- 

sidered in the observability analysis. It is shown 

that t ime-invariant INS error models are ob- 

servable with position measurements from at least 

three GPS antennas. If the number of GPS 

antennas is less than three, then the error models 

are no longer observable: There is at least one 

unobservable mode with position and velocity 

measurements from two GPS antennas. There 

exist at least three unobservable modes with posi- 

tion and velocity measurements from one GPS 

antenna. It is also shown that time-varying INS 

error models are instantaneously observable with 

position measurements from three antennas. 

Numerical simulation results show that low- 

cost IMU with carrier phase differential GPS 

system that has cm-level accuracy can be an 

accurate and reliable navigation sensor system. 
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Appendix 

A.I Proof of Lemma 1 and Lemma 2 

Let A ( t )  and Cm(t) be the time-varying 
forms of A and Cm in (48) and (49), respectively. 
If noise terms are neglected, the time-varying 
form of the linear error model with measurement 
from m GPS antennas is 

~ " Y c ( t ) = A ( t ) x ( t )  
(AI) 

y( t )  = C m ( t ) x ( t )  

with 

I 
o /3 o o o] 

G(tl -~, -R(t)F(t) o R(t) 

A '=I i ° o° °'" o° I i; o° 
G(t) = 

C/t) 

C~.(t) 

G~(t) 

(A2) 

where 

C , s ( t ) = [ A  0 - R ( t ) L s  o o] (A3) 

C,,j(t) =L0 13 -RIt){ ob(t) L~-L~ (t)} -R(t) L~ 01, 
(A4) 

j = l ,  2, -.., m 

Define 

Nmpo(t) 

Nmp(t) = Nmp~(t) (A5) 

N~p(n- , ( t )  

[ N. ,vo( t )  ] 

Nmpv(t)=l  Nmp"(t) I ,: (A6) 

L Nmpv(,-, (t) J 

with 

Nm~o(t) = Cp£ (t) (A7) 

[ N,,oo(t) 

N,,t,~o(t) [ C~( t )  (A8) 

/ L C~m(t) 
d 

Nmm (t) = Nrapu-u (t) A (t) +~t-Nmpu_l)(t)  (A9) 

d Nmp~j (t) =Nine(s-, (t) A (t) +~{N~p~u-, (t), 
( i  10) 

j = l ,  2, ..., n - l  

where n is the dimension of the state of the system 
~]Lt. Note that 

N3po(l) = I3 0 - R ( t ) L 2  0 (Al l )  
I3 0 - R ( t ) L 3  0 

Nap~t) = I3 Rit)L2Q(tl-d,',5~2,3/t)) -RItlL2 (AI2) 

I3 R(t) L3O { t ) -d  IN3~(~3)(t) ) -R(t) L~ 

G.:t) - o, N3p2~(t) N3p~,:.3)ltl-R t .O.blt) LL R(t~ 1 
N3p:(t') = G(t~ - 9.~ N~p~.~,(t) N3m.3)lt)-R(tl .o.,(t) L~ R(t) l (A 13) 

1 

[ Git.I - 9~ :V~,z(3.a/tl i\~m.31(t) -R(t) 9~Zt) L3 Rill] 

Nu,2<i.3)(t) = - R ( t )  F( t )  -Nu,,<~3)(t) ~ (t) 
d (Al4) 

+ ~/-(N3~,(;.3) (t)) 

where N3pk(i,j)(t) is the (i, j) element of the ma- 

trix N3pk(t). Suppose xu(t) (=[SPur( t)  ~ Vur (t) 



Observability Analysis of INS with a GPS Multi-Antenna System 1377 

yr( t )  e r ( t )  ¢rau(t)]r) is in the null space of 

N~o(t) m>_3 for any t~ [0 .  oo). Then, 

N~,~(t)x~(t)=o. j=o .  ~.--.. n - 1  

Since R ( t )  is nonsingular for all t ~ [ 0 ,  oo) and 

l~, [z, and [3 are linearly independent, Nsoo(t)xu 
(t) = 0  implies that 8P~( t )=Z~( t )=0.  N3m(t) 

x ~ ( t ) = 0  with ~P~(t)=-r~(t)=o implies that 

OV~(t) = e g ( t ) = 0  for the same reason. Finally, 

N3~(t )x~( t )=O with ~P~( t )=~V~( t )= r~(t)= 
cg~ (t) = 0  implies that sou(t) = 0  because R ( t )  is 

nonsingular. Thus xu( t )=0.  Hence, the rank of  

N,~(t)  is n for all t ~ [ 0 ,  co) and m 2 3 .  Since 

the rank of N~o~(t) is greater than or equal to 

that of N~o( t ) ,  the rank of N ~ o ( t )  is n, which 

is its maximum value. This completes the proof  of 

Lemma 1. The proof  of Lemma 2 is omitted 

because it is similar to that of Lemma I with the 

t ime-invariance assumption on A (t) and C~ ( t ) .  

Then, we have the relation 

0 0 

~ =  h 0 -R(L2-L~)  0 (A23) 
0 h  0 0 
0 A 0 -R (Lz -L~)  

0 1 3 0  0 

0 13 0 - R ( L 2 - L I )  (A24) 
C~= 0 0 0  0 

0 0 0 R ( L z - L 1 ) f 2  

0 0 0  0 R I  
C~ = o o o R(Lz-L~) f~ (A25) 

0 G 0 C 3 4  - -  ~ eR 
0 G 0 c4, ~ ~RJ 

( C'z ~) s = 0  (A26) 

(~),: -(C~-~), Q 
+ (C~-z)s[Rr(GRLz+ ~,RL~9.) -L~Q2-FI, 

k = 3 , - " ,  n - I  

(A27) 

A.2 Proof of  Lemma 3 and Lemma 4 

As mentioned in the Remark 1, the assumption 

that A and Cm are constant implies that f2b=0 

and f2 = f2 ~. Consider the t ime-invariant  system 

~,~ : x = . g £  
y=C2x  (AI5) 

with 

x =  T2x, (AI6) 

A =  T f ' A T 2  (AI7) 

C2= C2 Tz (AI8) 

where x, T2, A ,  and C2 are defined in (41), (50), 

(48), and (49), respectively. Note that 

o 13 o o o ] 
o o o o R 

A =  0 0 0 A 0 

0 0 0 --f2 0 
0 RrG 0 as4 - R r f ~ R  

where 

(AI9) 

as ,=R r ( G R L I +  f2eRL~ f2) - L ~  Q 2 - F  (A20) 

Let 

C ~ : C z A  k, k = l ,  2, " ' ,  n - I  (A21) 

where n is the size of x. Decompose C~ such that 

C~=[(C~ ' )x  (C~)z (t~')3 (C~')4 (C~')s] (A22) 

where 

c34 = G R L I -  R F -  RL1 • z+ f2 eRLI f~ 
cu = GRL1 - R F -  RL2 ~2 z + f2 eRL1 Q 

(A28) 

Let £'2u(=ES/~zr,, ~P~'~ ~ # r  gr j r )  be an 

unobservable state of the system ~,L2. 

Then, 

C~.7C2U=0, k=0, 1, "", rt--1 (A29) 

C°.~2u=0 implies that ~fi2u=c~V2u=O, )'2u=cr 
( / 2 -  ll), and ¢2gu = cg (12-- ll) where cr and cg 
are constant numbers. (~.~2u=0 implies that 

g2au=O. It also implies that ~2gu=O if a)/bb is not 

parallel with /2-- ll. C~.~2u=0, j =  1, 2, ..., n -  l 

with ~P2u:~V2u:~2au:O implies that ~2gu:Cg 
(12--l~) if both co~=Cw(12--la) and GRl~×12: 
RF(12-A)  where cw is a constant number. Oth- 

erwise, gzgu:0.  Since (C~')3=0, k = l ,  2, -.., 

n - l ,  the system ~.z2 always has one unob- 

servable mode £'r2- Hence, the system can have at 
most one additional unobservable mode . ~ .  This 

completes the proofs of Lemma 3 and Lemma 4. 

A.3 Proof of  Lemma 5 

The proof  of Lemma 5 is quite similar to that 

of Lemmas 3 and 4. Consider the t ime-invariant  
linear system 
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with 

(A30) y = C-'1£ 

C,:C1T2 (A31) 

where _,~ is defined in (A17). Define C~ and 
(C'~)~, j : l ,  2, "", 5 in the same way as in the 

Appendix A.2 Then, 

Co Via 0 0 0 0] (A32) 
1 : ~ 0  I3 0 0 0 

-1 0 0 0 I0 13 0 C1= (A33) 
o o o R~ 

I0 0 0 0 R ] (A34) 
C'z= 0 G 0 c34 - Q e R  

(Cf) a=O (A35) 

(C~),=-(C~-~),Q + (C~-~)s[Rr(GRL~ + ~L ,  Q)-LtQ2-F!, (A36) 
k = 3 ,  "-', n - 1  

where c3, is defined in (A28). It is obvious that 
[0 0 /3 0 0 I t  is in the null space of the matrix 

~ ( ~ ) r  (c l )  r ... (C[,-t) rJT (A37) 

This completes the proof of  Lemma 5. 

A.4 Proof of Lemma 6 

Let 

H~.= 

//2 
"'.  0 

H~ 
//1 

0 //2 
,° 

H~ 

(A38) 

C~(t)=IC~,(t) Cry(t)... Cry(t) C~t~(t) C~(t)'.. C~(t)l r (A39) 

where Ham is a block diagonal matrix. H~-, j :  1, 2, 
• -', m is defined in (40). Cpo(t) and Coo(t), j =  
1, 2, .--, m, are time-varying forms of  Cpo and 
Cot,- in (62) and (63), respectively. Let Aa(t) 
and Cam(t) be the time-varying forms of Aa and 
Cam in (67) and (68), respectively. If noise terms 
are neglected, the time-varying form of the system 

~ r  in (66) is 

~ r t "  ~ a ( t ) = A p ( t ) x a ( t )  (A40) 
yam(t) =Cam(t)xa(t)  

Then, we have 

Cam (t) =HamCpvtm (t) (A41) 

Since H~ is a constant nonsingular matrix for each 
j =  1, 2, ..-, Hpm, is a constant nonsingular matrix. 
Hence, the procedure of instantaneous observa- 
bility test based upon the null space test for the 
matrix pair (Aa(t) ,  Cam(t)) is the same as that 

for the matrix fair (Aa(t), Cpvtm(t)). The test 
procedure for the latter matrix pair is almost the 
same as in Appendix A.I and is omitted here. 




